- A+
线性代数,有一套大众邮电出版社出的图灵统计学系列数学书,内中有不少不错的册本,此中有好几本是线性代数的,你可以找找;
综合:陶哲轩的老师stein有一套书,国外有引进,循序渐进,分袂是《傅里叶赏析》、《复阐发》、《实综合》、《泛函分析》,下面提到的那套数学书,个中有一本是陶哲轩写的《陶哲轩实分析》;
几何:解析若干好多是入门级别啦,真实等于把几何赏析化。真正的几何要看微分几许啊,有一套高等指点出版社出的蓝皮的法兰西数学书,里面有《微分几多》、《微分学》(这个的几多因素不是很重,就当是语言学习吧)等等。不外团体倡始看看陈省身与陈维桓合著的《微分若干好多课本》,不过你要先好好主宰一入手下手提到的剖析和代数。在这之后,理当看看拓扑学了,举荐图灵统计学系列的《基础拓扑学》;
代数:机械家产出版社有一套黄皮的数学书很不错,个中有一本大代数家E.Artin儿子M.Artin写的《代数》,可以作为入门啊。尔后可以看看人民邮电那套里面的《近世代数概论》。固然,暴烈引荐科学出版社科大名著系列里面的范德瓦尔登的《代数学》,经典之作!
算术:要赏识数学之美,就未必要看数论啦。不外现在许多大学都不要肄业了。保举公家邮电出版社那套里面的Hardy与或人合著的《数论导引》。
噢!微分方程怎么样没有呢?结合物理学吧,看费曼的《费曼物理学课本》,而后在本人找书学,收尾再去学浑沌,浑然天成有木有!
差别的大学应该有着不太一样的深造模式和规范,不过如果师资齐备的话,该当大体差不久不多。
此刻在南京大学数学系的时刻,大体的学习课程年华表是这样的。在本文中只列举专业课和核心课,另外的课程就长期不摆列了。
大一的时辰一样平常就是数学解析,高等代数,C++等课程。05 年曩昔照样用宋国柱的《数学综合教程》,反面就逐步改为梅加强的了。数学综合课程其实学了三个学期。
除了南京大学的教材之外,还可以看看复旦大学的,中科大的,北大的,这个遵循每小我的工夫来自行安排便可。
英文版的教材可使用,备注:下列基本数学阐发教材有难度,倡始先从上面的中文教材看起。
线性代数方面决议的是这本书,现在照旧第三版,现在都有第五版了。高等代数课程学了两个学期。
在大二上学期,学的是连系数学,常微分方程,数学分析(第三局部)等模式,当时还学了一门课叫做数据库,貌似讲的是 VFP(PS:至今都没理解为甚么会开设这门课)。星散数学用的是孙老师的笔记和教材。常微分方程用的是这一本,数学阐发与大一坚持一致。
所学的理当等于复变函数,概率论,难理解代数,数值较量争论四门课了。概率论昔时照样第二版,今朝也有第三版了。
复变函数的参考册本是钟玉泉的,宛若课本是啥我反而遗忘了,如同是下面这本蓝色的书籍。不过其时第一次进修就看了钟玉泉的教材。
整体来看,数学系本科的课程大抵便是这些。无非统计,总计数学学的课程在大三略有差异,需要进行一些斡旋。统计学会学习数理统计,随机过程等课程。而计较数学会学习数值共计,偏微分方程数值解,运筹学等标的目的。书籍详细不记患有,也没学过,列举一些罢了。
大概是何等一些模式,想进修的可以参考一下,或者决定一些本身恋情的书本发展阅读。
数学专业是指遍及意义的呢,仍是详细的。因为 “数学专业” 这个词对照含混。其余知友描画更像是数学与使用数学,通常也确实简喻为数学。
一般的,数学类共同的课程都有数学赏析、高等代数(或者线性代数),这里两门考研一般也是要考的,而且是高级课程。数学与使用数学偏经典,消息与合计科学偏前沿。各学校课程设置纷歧样,就拿个样板数来吧。(我整体是动静与合计科学身世,简称总计,偏计算数学)
现在转头看,数学专业最最外围的专业课莫过于数学赏析和线性代数。在这之后,感兴趣的标的目的分歧,核心的课程也会有所分歧,待会咱们会详细阐发。
数学分析外洋的教材对照推荐的是北大伍胜健和复旦陈纪修两套。假设你感受外洋的教材更强适当你的口胃这两套照常不错的。
更进一步,要是有了一定基本,想要学一点进阶的工具;或者本身即是大佬,那末卓里奇数学剖析,stein四部曲,rudin等这些教材都是相当优异的数学教材。
假如以后你想做几率统计左袒,或者要是你更倾向于做使用,并且此中会涉及到随机的一小块,那么几率论是一个很必要,固然也很焦点的课程。
根本几率论举荐Ross。Ross这本书不难,但极为器重几率直观,这个对将来的研讨进修是很有利益的。
高等概率论推下列三本:施利亚耶夫,周元燊(Yuan Shih Chow)和钟开莱。
其中,施利亚耶夫第一章同样引荐给低年级刚交兵几率论的同砚,写得相当不错,也是上等的工具。第二章先容猜度论,但整体感受这章讲得适度难理解,假定不是研究概率统计这个偏袒的同窗,不太提倡通过这本书看臆测论。虽然之后依然照样很优良的。
我最相熟的理当是周元燊这本。这是本英文书。没找到外洋的版本,翻译版跟影印版都没找到。
这本书各个定理都尽可能地往一样平常了推,这对做科研照旧挺朋友的。到底咱们并不是往往可以拿到很好的前提,比方独立同漫衍。
举荐的教材除了刚才提到的stein四件套,rudin的实赏析与复综合也是不错的。(rudin彷佛还写了泛函分析,无非不用然写得如何。)
代数左袒的中心课程还有近世代数。除了柯斯特利金以外,国际教材科大的冯克勤晚世代数还是不错的。
微分若干好多举荐de Carmo, 彭家贵和小林昭七。要是高年级的同学假如关怀三维以上的微分若干好多,强推陈省身的微分几多课本。
微分方程左袒包罗,常微分方程和偏微分方程。常微分方程举荐丁同仁这本书,偏微分方程不有发现特别推荐的。倒是数学物理方程傍边谷超豪这本不错。
接上去的这些课程相对于没有以上那些课程那样具有相比普适的需求性,但对付对应方向也是十分紧要的。涵概数论,运筹学,组合数学及图论,数值剖析等等。
组合数学假如入门的话合计机系那本书是搞定的,但更恰当数学系的教材没有发现值得推荐的。
你理应发明了,假如可以的话,一门课我会尽量推荐几本我晓得的好教材。起因是,我感到一门课我们没必要执着于一本教材。抗衡话题差别教材的机密法子是不合的,其劈面作者的思惟方式有一致。从差异的教材挑出最切当你的思惟门径才是关头。
另外一个起原是电子书。电子书这里保举两个web。鸠摩搜书与library genesis。后者有多个镜像,选最快的那个就行了。
教材:目下当今先是看了清华大学的《微积分教程》和Rudin写的《数学赏析原理》,学校用的是复旦的蓝色的数学剖析
教材:目下当今先是看了复旦大学姚慕生写的《高等代数学》,黉舍用的是李尚志的线性代数
教材:那时先是看了MIT OCW的视频课程,黉舍用的是一本蓝色的《常微分方程教程》
教材:那会先看了北大的黄色小书《难理解代数I》,黉舍用的书冯克勤与我们教员合写的《晚世代数引论》
教材:那会看了Sheldon Ross的教材,黉舍用的是北大何书元的教材《概率论》
【微分几多】主要讲三维欧氏空间中的润滑曲线、润滑曲面的局部几何性子与整体若干好多性质
【随机进程】泊松进程与更新进程,马尔可夫历程,布朗运动,鞅,随机解析,谱现实
【运筹学】线性规划及纯洁型法,对偶实际及锐敏度阐发,运输题目,图与网络综合,排队论,存贮论,决策论
【工夫序列解析】 岁月序列,自回归模型,滑动匀称模型与自回归滑动平匀模型, 均值与自协方差函数的估计,时日序列的预告,ARMA模型的参数估量,潜周期模子的参数估计,年华序列的谱估计,多维坚挺序列先容
外围课程逃不出上述列位的回覆.至于教材,集团感应本科阶段的国际教材有些不逊于国外的(比喻北大的黄皮,当年被虐得死而复活),至于高级一点的课程,比较经济适用的教材是直接到国外大学的站点高低载讲义和习题.
我以为,中科大的数学系本科生培育规画写的不错。以下的课程设置均来自于中科大数学系(有旋转):
焦点课程:初等数论、常微分方程、实变函数(实剖析)、复变函数(复赏析)、概率论、抽象代数、微分几何、偏微分方程、点集拓扑、泛函赏析、组合数学
进阶课程(研究生课程):高等实赏析、代数拓扑、微分流形、代数学、群与代数显露论、谐与阐发、古代偏微分方程、换取代数、黎曼多少、图论、代数数论
- 我的微信
- 这是我的微信扫一扫
-
- 我的微信公众号
- 我的微信公众号扫一扫
-